热设计网

冷却装置、冷却介质和冷却方法

admin

8.1 冷却装置、冷却介质和冷却方法
功率模块的通态损耗、开关损耗、截止损耗等所产生的温升须由散热器来降低。散热器的作用是增加功率模块的传热和辐射面积、扩张热流以及缓冲传热过程。
基于模块的绝缘性能, 一个系统的所有功率模块都可安装在一块共同的散热器上,该散热器同时还可当作结构部件,实现其他的功能(外壳、底座等)。
散热器的散热过程为:通过直接传导或借助于传热介质将热量传递到冷却介质。
传热介质可以是空气、水或者(在极少数情况下)绝缘油,通过其自身的重力或通过风扇以及泵来实现循环传热过程。
冷却介质可以是自然或被强制流动的空气、水及其混合液。
下面将主要讨论自然空气冷却(自然对流)、强制空气冷却以及仅含一种冷却介质的水冷系统。其他更为复杂的冷却方式,象热管或蒸发冷却,一般来说需要针对具体的应用做特别的没计。另外,在功率模块中油冷也几乎很少被用到。
在材料费用和加工费用允许的情况下,散热器材料应该具有尽可能好的导热系数λ。因此,金属铝(纯铝λ=247W/m•K)通常是优先被采用的材料。在要求特别高的场合有时也可以采用铜(λ=398W/m•K)。
值得注意的是导热系数与制造工艺以及所采用的合金有很大的关系。在实际应用中,多数散热器的导热系数λ大致在150W/m•K(铸造铝合金)和220W/m•K(AIMgSi挤压成型)之间。

热量的扩散对散热器的散热效率有着可观的影响。因此,对散热器根部厚度的优化、翼片的数目、翼片的高度以及翼片的厚度之间比例的合适选取显得相当重要:
1)散热器的根部是用于安装功率模块的、不含分岔的平面区域。该处与模块底板之间的温度梯度相对较小,有着明显的热扩散作用;
2)对于空气冷却散热器来说,其大部分热量是通过翼片以辐射和传导的方式传递到周边环境的。而对于水冷散热器来说,这一作用或多或少地是由具有特定结构的水通道来实现的。
由 Rthha=△T/Ptot=1/(αA) (40)
可得到 Q=αA△T=Ptot
式中:Q为散发的热量;
α为传导系数;
A为传热面积;
ΔT为与环境温度之间的温度差;
Ptot为需要带走的损耗;
Rthha为散热器的热阻。
如果采用较多的翼片,便可以增大传热面积,但前提是能够保证流体的顺畅流动,否则α会超比例下降。
从这一结论出发,自然冷却和强制冷却的优化条件便有所不同。
当功耗增加时,散热器温度增高,受热也就更加均匀。也就是说,有效热交换的面积在增加。
8.2 冷却装置的传热模型
在介绍功率模块的热性能时,等效热路中的散热器是由一个RC元件来描述的(Rthha,Zthha)。
然而,当功耗在t=0时刻从P=0跳跃到P=Pm时,散热器的动态热抗Zthha随时间t而变化的特性曲线显示出其具有多个时间常数。系统总热抗的特性曲线Zthha(t)可以通过将功率模块的热抗与模块一散热器的热抗相迭加而得到。

8.3 自然空冷(自然对流)
自然空冷多用于功耗低于50W的系统,以及不允许应用风扇或者器件的散热面积特别大的大功率系统。
一般来说,在自由对流时散热器的热阻往往大于功率模块的内部热阻。所以,芯片与冷却空气之间的温度差大部分降落在散热器上。在接近模块的散热器处的温度,常常高于强制风冷时的温度,例如,在90℃到100℃之间。由于功耗通常比较小,所以根部和翼片相对较薄,而且材料的传导系数对热性能的影响不是十分重要。翼片之间的距离应当足够地大,以便在空气的升力(温度差/密度)和摩擦力之间取得较好的折衷。将散热器表面黑化可以有效地改善热辐射性能。在安装面和环境空气之间的温度差为50 K时,黑化后的散热器热阻约降低15%。值得注意的是,上述表面处理并不影响模块底板和散热器之间的传热界面。
8.4 强制风冷
与自然空冷相比较,强制风冷时散热器的热阻可降低到1/5~1/15。
同自由对流相比,强制风冷时的α明显要大许多。当空气的入口温度为35℃时(参数表中的额定环境温度),强制风冷散热器的表面温度在额定运行时不应该大于80℃到90℃。
散热器材料的传导系数对冷却的效果影响极大。因此,建议选择较厚的根部和尽可能多的翼片数目。由于热量主要通过对流而散发,所以对于强制空冷来说,对散热器进行黑化处理几乎没有什么效果。
热阻Rthha主要由单位时间内通过的气流量Vair/t所决定。而气流量则依赖于冷却介质的平均速度Vair和流通截面A。
Vair/t=VairA (41)
在这里假定气体的流动为层流。实际上,如果翼片表面的设计合适,在翼片表面附近的空气涡流会在翼片中形成紊流,从而地一步改善热传导的效果。
当翼片数目和翼片宽度进一步增加时,散热器的流通面积减小,冷却介质的压力降△p增加。这同增加散热器的长度(翼片长度L)是一样的。因此,传热的效果还与风扇的性能有关。图53给出了风扇的特性△p=f(Vair/t)。
由风扇的特性和散热器的压差曲线△p=f(Vair/t,L)或△p=f(Vair,L)可以得到空气的流量,如图54所示。它们的交点决定了散热器的热阻。

除了空气的流量以外,Rthha还取决于散热器上热源(功率模块)的分布及其位置。
如果需要对强制风冷的散热器剖面进行优化,则可以将其热传导与热对流的函数对翼片的高度进 积分。经简化后可以得到式(42)

α为对流系数;
U为翼片的周长;
λ为散热器的热传导系数:
A为翼片的截面;
h为翼片的高度。
常常有数个散热器共用一个风扇的情形。在此情形下,散热器既可以并联(散热器左右相邻),又可以串联(散热器在空气流动方向上前后相接)。
尤其是在热串联的情形下,例如,用标准GB电路(半桥模块)的SKiiPPACK构成三相逆变器时,需要在传热设计中特别注意冷却空气会被前置的SKiiPPACK所加热。
作为经验值,在空气流量为300m3/h时,每kW功耗所导致的进出口空气温差可达10℃左右。
8.5 水冷
对于功率模块进行水冷既可以用于特大功率的变流器(MW级),又可以用于较小的功率,条件是系统本身已经提供了循环水的装置(例如,汽车驱动、电解装置、感应加热等)。
如果冷却介质的热量被直接释放到环境大气中,则冷却介质的进口温度多为50℃~70℃。在具有主动制冷的工业装置中也可以是15℃~25℃。
和空冷相比,散热器的表面和冷却介质之间的温差比较小。它可以从两方面来加以利用:
1)提高功率,在负载循环变化时允许芯片产生更大的动态温差△Ti;
2)降低芯片的温度,延长寿命。
由于水具有较大的热容量(比热容Cp=4.187kJ/kg•K),所以它原则上优于其他液体介质,如油、乙二醇等。
然而,由于水可能会引起生锈和结冻,所以开放式的或封闭式的纯水循环系统极少被应用。
如果将水与醇相混合,则冷却液的热容量会下降(当入醇量为50%以及流体温度为40℃时Cp=3.4kj/kS•K)。另外,冷却液的粘度和比重随加醇的比例上升而上升,导致散热器和冷却液之间的热阻Rthha急剧增加。例如,同纯水相比,含50%醇的冷却液热阻会增加约50%~60%;而当醇含量为90%,时,热阻会进一步上升60%~70%。
为了防锈的目的,SEMIKRON的铝制水冷散热器要求醇的含量不低于10%。冷却液的硬度不得超过6。当冷却温度大于60℃时,则建议使用循环式的冷却液。
采用水冷时,带功率模块或SKiiPPACK的散热器也叮以串联。作为经验值,每个散热器(例如,SEMIKRON用于SKiiPPACK的水冷散热器)在流量为10L/min以及采用50%/50%的水醇混合液时,每kW功耗的进出口温差约为1.7K。
 

标签: 点击: 评论:

留言与评论(共有 0 条评论)
   
验证码: