散热器的设计方法
散热器冷却方式的判据
对通风条件较好的场合:散热器表面的热流密度小于0.039W/cm2,可采用自然风冷。
对通风条件较恶劣的场合:散热器表面的热流密度小于0.024W/cm2,可采用自然风冷。
散热器强迫风冷方式的判据
对通风条件较好的场合,散热器表面的热流密度大于0.039W/cm2而小于0.078W/cm2,必须采用强迫风冷。
对通风条件较恶劣的场合: 散热器表面的热流密度大于0.024W/cm2而小于0.078W/cm2,必须采用强迫风冷。
散热器设计的步骤
通常散热器的设计分为三步
1:根据相关约束条件设计处轮廓图。
2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。
3:进行校核计算。
自然冷却散热器的设计方法
考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距。
自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿。
自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热。
由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上。
强迫冷却散热器的设计方法
在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm。
增加散热器的齿片数。目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8。对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm。
采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数。
当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响。
在一定冷却条件下,所需散热器的体积热阻大小的选取方法
在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法
不同形状、不同的成型方法的散热器的传热效率比较
散热器的相似准则数及其应用方法
相似准则数的定义
散热器的相似准则数及其应用方法
相似准则数的应用
散热器的基板的优化方法
不同风速下散热器齿间距选择方法
不同风速下散热器齿间距选择方法
优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式
辐射换热的考虑原则
如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响。因为此时辐射波长相当长,处于不可见的红外区。而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关。
对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献。
如果物体表面的温度低于50℃,
可不考虑辐射换热的影响。
辐射换热面积计算时,如表面
积不规则,应采用投影面积。
即沿表面各部分绷紧绳子求得
的就是这一投影面积,如图所示。辐射传热要求辐射表面必须彼此可见。
热设计的计算方法
冷却方式的选择方法
确定冷却方法的原则
在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却。
冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性,如图1所示。
冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却
冷却方式的选择方法案例
某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?
计算热流密度: q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2
根据图2查得,当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求。
若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求。
机箱的热设计计算
密封机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT
对通风机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+1000uAΔT
对强迫通风机箱
WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+ 1000QfΔT
自然冷却时进风口面积的计算
在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:
Sin=Q/(7.4×10-5 H×Δt 1.5)
s-通风口面积的大小,cm2
Q-机柜内总的散热量,W
H-机柜的高度,cm,约模块高度的1.5-1.8倍,
Δt=t2-t1-内部空气t2与外部空气温度 t1 之差 , ℃
出风口面积为进风口面积的1.5-2倍
强迫风冷出风口面积的计算
模块
有风扇端的通风面积:
Sfan=0.785(φin2-φhub2)
无风扇端的通风面积S=(1.1-1.5) Sfan
系统
在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为:
S=(1.5-2.0)(N×S模块)
N---每层模块的总数
S模块---每一个模块的进风面积
通风面积计算的案例
[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?
H按2倍模块的高度计算,即 H=2×7U=14U
进风口的面积按下式计算:
Sin=Q/(7.4×10-5×H×△t1.5)
=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2
进风口高度h
机柜的宽度按B=680mm计,则进风口的高度为:
H=Sin/B=875/68=128.7mm
b 出风口面积Sout
Sout=(1.5-2.0)Sin=2×875=1750 cm2
实际冷却风量的计算方法
q`=Q/(0.335△T)
q`---实际所需的风量,M3/h
Q----散热量,W
△T-- 空气的温升,℃,一般为10-15℃。
确定风扇的型号经验公式:
按照1.5-2倍的裕量选择风扇的最大风量:
q=(1.5-2)q` 按最大风量选择风扇型号。
实际冷却风量的计算方法
案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇。
实际所须风量为:
q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h
按照2倍的裕量选择风扇的最大风量:
q=2q`=2×159.2=318.4m3/h
下表风扇为可选型号
型材散热器的计算
散热器的热阻
散热器的热阻是从大的方面包括三个部分。
RSA=R对+R导+ R辐
R对=1/(hc F1)
F1--对流换热面积(m), hc –对流换热系数(w/m2.k)
R辐--辐射换热热阻 ,对强迫风冷可忽略不计
对自然冷却 R辐=1/(4бεTm3)
R导=R 基板+R肋导
=δ/(λF2)+((1/η)-1)R对流
λ--导热系数,w/m.h.℃
δ-- 散热器基板厚度(m)
η-- 肋效率系数
F2--基板的导热面积(m)
F2=0.785*(d+δ)2
d- 发热器件的当量直径(m)
型材散热器的计算
对流换热系数的计算
自然对流
垂直表面
hcs=1.414(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取散热表面的高,m
水平表面,热表面朝上
hct=1.322(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m
水平表面,热表面朝下
hcb=0.661(△t/L)0.25 ,w/m.k
式中: △t--散热表面与环境温度的平均温升,℃
L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m
型材散热器的计算
对流换热系数的计算
强迫对流
层流 Ref<105
hc=(1.1-1.4) λ空气 0.66Ref 0.5/L
湍流 Ref>105
hc=(1.1-1.4) λ空气 0.032Ref 0.8/L
肋片效率
对直齿肋:
η=th(mb)/(mb))
m=(2 hc/λδ0)
δ0:肋片根部厚度(m)
b. 肋高(m)
型材散热器的计算
散热器的流阻计算
散热器的流阻包括沿程阻力损失及局部阻力损失
△P=hf+hj
=λf•L/de•ρV22/2+ζρV22/2
λf --沿程阻力系数
L--流向长度(m)
de--当量水利直径(m),de=4A流通/湿周长
V--断面流速(m/s)
沿程阻力系数计算λf
层流区:Re=Vd/υ≤2300 λf=64/Re
紊统光滑区 4000<Re<105 λf=0.3164/Re0.25
υ--运动粘度系数(m2/s),从文献中查找
型材散热器的计算
散热器的流阻计算
局面阻力系数ζ
突然扩大
按小面积流速计算的局部阻力系数:ζ1=(1-A1A2)
按大面积流速计算的局部阻力系数: ζ2=(1-A2/A1)
突然缩小
可从相关的资料中查阅经验值。
型材散热器的计算
【案例】散热器DXC-616(天津铝合金厂编号),截面图略,散热器的截面积为77.78cm2,周长为2.302m,单位长度的重量为21KG/m。风扇采用PAPST 4656Z ,风扇功率19W,最大风量为160m3/h,压头为70Pa.
风道阻力曲线的计算
入口面积:Fin=0.785×D2 =0.785×0.1192=0.01116m2
流通面积:Ff=Fin-Fc=0.01116-0.007778=3.338×10-3m2
水力直径: de=4Ff/x=4×3.338×10-3/2.302=5.8×10-3m
由于风速较低,一般最大不会超过6m/s,雷诺数<2300,沿程阻力系数按下式计算:λ=64/Re=64 ν/Vde
沿程阻力按下式计算:
hf=λ(L/de)(ρV2/2)=(64 ν/Vde)(L/de)(ρV2/2)
=(64×16.96×10-6×0.24/(V×0.00582))(ρV2/2)
=(8.07/V)(ρV2/2)
局部阻力按下式计算:
hj=ξρV2/2
对于突然缩小,A2/A1=0.003338/0.01116=0.3,查表得ξ=0.38
总阻力损失 H=hf+ hj=(0.38+8.07/V )(ρV2/2)
型材散热器的计算
【案例】续
确定风扇的工作点
10KVA UPS 的选择风扇为PAPST 4656Z,我们把风道曲线与风扇的曲线进行叠加,其交点即为风扇的工作点,给工作点对应的风速为5m/s,压力为35Pa.
散热器的校核计算
雷诺数 Ref=V×L/ν=5×0.24/16.96×10-6=5.6604×104
努谢尔特数: Nuf=0.66Ref0.5=0.66(5.6604×104)0.5=157
对流换热系数:hc=1.4λNuf/L=21.7w/m.k
m=(2 hc/λδ)0.5=9.82
ml=9.82×0.03=0.295,查得:η=0.96
该散热器的最大散热量为(散热器台面温升按最大40℃考虑):
Q=hcF△t η=460.4W
计算结果表面,散热器及风扇选型是合理的。
冷板的计算方法
传热计算
确定空气流过冷板后的温升:t=Q/qmCp
确定定性温度 tf=(2ts+t1+t2)/4, 冷板台面温度 ts为假定值
设定冷板的宽度为b,则通道的横截面积为Ac ,Ac=b×Ac0
确定定性温度下的物性参数(μ、Cp、ρ、Pr)。
流体的质量流速和雷诺数 G=qm/Af Re=deG/μ
根据雷诺数确定流体的状态(层流或紊流), Re<1800, 层流, Re>105, 湍流
根据流体的状态(层流或紊流)计算考尔本数J
Re<1800,层流 J=6/Re 0.98 Re>105,湍流 J=0.023/Re 0.2
也可以根据齿形及雷诺数从GJB/Z 27-92 图12-18查得
冷板的计算方法
传热计算
计算冷板的换热系数: h= JGCpPr2/3
计算肋片的效率 m=(2h/λδ)0.5,ηf=th(ml)/ml(也可以根据ml值查相应的图表得到肋片效率)
计算冷板的总效率:忽略盖板及底版的效率,总效率为: A=At+Ar+Ab, η0=1-Ar(1-ηf)/A
计算传热单元数 NTU=hη0A/qmCp
计算冷板散热器的台面温度
ts=(eNTUt2-t1)/(eNTU-1)
冷板的计算方法
流体流动阻力计算
计算流通面积与冷板横截面积之比
σ=Af/Ac
查空气进入冷板时入口的损失系数Kc=f(Re,σ): 根据雷诺数Re及σ从GJB/Z 27-92 图12-16及图12-16查得
查摩擦系数f=f(Re,σ): 根据雷诺数Re从GJB/Z 27-92 图12-18查得
计算流动阻力
△P=G2[(Kc+1-σ2)+2(ρ2/ρ1-1)+f ρ1A/(Afρm)-(1-σ2-Ke)ρ1/ρ2]/(2ρ1)
冷板的计算方法
判断准则
确定是否满足ts<[ts],如果不满足,需增大换热面积或增大空气流量。
确定是否满足△P<[△P],如果不满足,需减小冷板的阻力(如选择阻力较小的齿形、增大齿解决等)或重新选择压头较大的风扇
冷板的计算方法
案例:10KVA UPS 冷板散热器,器件的损耗为870.5W,要求冷板散热器台面温升小于30℃(在40℃的环境温度下)。
冷板散热器的截面图略
梯形小通道面积:Ai=(3.8+2.6)×9.5/2=30.4mm2
每排有29个梯形小通道,共22排,n=29×22=638个
基板厚度为:9mm
总的流通面积 Af =30.4×29×22=0.0193952 m2
冷板的横截面积 Ac=120×120×2=0.0288 m2
水力半径:de=4Afi/х=4×30.4/(2×9.5+3.8+2.6)=4.787mm
冷板的计算方法
【案例】续
确定风扇的工作点
Re=de G/μ=deqm/μAf
在40℃空气的物性参数为: μ=19.1×10-6kg/m.s, ρ1=1.12kg/m3
Re=(4.787×10-3×1.12×0.30483 qm1/(60×19.1×10-6×0.0193952)
=6.831 qm1(qm1的单位为:CFM)
σ=Af/Ac=0.0193952/0.0288=0.673
冷板的计算方法
【案例】续
先忽略空气密度的变化,不同流量的流阻计算如下表所示:
我们把两个NMB4715的风扇流量相加,静压不变,得出两个风扇并联后的静压曲线,再把上表的数据绘制成风道曲线并与风扇静压曲线进行画在同一张图上,其交点即为风扇的工作点,即为(170CFM,0.13in.H2O),工作点对应的风速为4.14m/s。
冷板的计算方法
【案例】续
空气流过冷板后的温升
空气口温度为40 ℃,ρ1=1.12kg/m3,Cp=1005.7J/kg. ℃
μ=19.1×10-6kg/m.s, Pr=0.699
质量流量 qm=0.080231×1.12=0.08986kg/s
△t= Q/qmCp=870.5/0.08986×1005.7=9.63 ℃
定性温度: tf=(2ts+t1+t2)= (2×80+40+49.63)/4=62.4 ℃
按定性温度查物性得: ρ1=1.06kg/m3,Cp=1005.7J/kg.℃ μ=20.1×10-6kg/m.s,Pr=0.696
换热系数
质量流速 G=qm/Af =4.14×1.12=4.64kg/m2.s
雷诺数 Re=deG/μ=4.787×10-3×4.64/(20.1×10-6)=1105.1 层流 J=6/Re 0.98=6/1105.10.98=6.25×10-3
h= JGCpPr-2/3=6.25×10-3×4.64×1005.7×0.696-2/3 =37.14W/m2.℃
肋片效率 m=(2h/λδ)0.5=(2×37.14/(180 ×0.001))0.5=20.3
ml=20.3×0.11=2.23
ηf=th(ml)/ml=th(2.23)/2.23=0.433
传热单元数:NTU=hη0A/qmCp=37.14×0.433×3.241 =0.5772
冷板的表面温度: Ts=(eNTUt2-t1)/(eNTU-1)=61.9 ℃<70℃
冷板设计方案满足散热要求。
设计培训资料料下载:电子科技大学_产品的热设计方法.pdf
标签: 点击: 评论: