热设计网

双面水冷 IGBT 在车载电机控制器中的应用

热设计

引言

新能源汽车使用电驱动系统作为动力源,其电机控制器作为主要的电力转换与传输部件,在车辆行驶中会产生较多的热量,能否得到有效冷却是决定电机控制器及车辆是否正常工作的关键。绝缘栅双极晶体管(以下简称IGBT)是电机控制器内的核心部件,运行温度是影响其性能和可靠性的关键因素。随着新能源汽车的动力需求不断提升,电机控制器的功率要求越来越高,IGBT则需要达到更高的工作电流,相应的,晶体管会产生更多的热量。传统的单面水冷式IGBT封装在热阻、散热能力上已无法满足高功率电机控制器的散热需求。另外,当电机控制器高功率运行时,会产生较大的三相电流,而三相铜排作为电机控制器与电机之间的电力传输部件,会产生大量的焦耳热,使铜排达到较高温度水平。铜排过高的温度一方面会使控制器腔体内温度提高,不利于其他器件的正常工作;另一方面会使铜排的电阻升高,产生较高的损耗,降低效率。

同时,高功率电机通常会适配后驱车型,为了追求车内乘坐空间,电机及电机控制器在整车下的布置空间会非常有限,尤其在纵向方向上的尺寸要求更为苛刻。为此,电驱动系统需采用高度集成式的设计,尽可能减小体积,提高功率密度。

文献介绍了一种双面水冷式IGBT的结构及封装,文献介绍了一种采用双面水冷IGBT的电机控制器。本文介绍了一款电机控制器,设计最大功率达到240kW,最大输出电流1200A,功率模块选用双面水冷式IGBT,连接形式为6个半桥两两并联,并为IGBT设计了配套的散热器。三相铜排采用叠层母排,UVW三根铜排分别用绝缘材料包塑后粘合成一个整体。散热器为叠层母排专门设计了散热结构,能够为IGBT和叠层母排同时进行冷却散热,在保证IGBT不超过温度限值的同时,可以将叠层母排的温度保持在较低水平。在电机控制器整体设计方面,采用集成式设计,可以与电机、减速箱装配为集成式电驱动总成。控制器的布置方式有效降低了电驱动总成在纵向方向上的高度,具有较好的布置可行性与通用性。

方案设计

1.1双面水冷IGBT及散热器模块

本文设计的双面水冷IGBT及散热器方案如图1所示。该方案主要包括6个双面水冷IGBT及配套设计的散热器,另外在高压端设计了绝缘支架,可以起到对端子的固定和保护作用,另一方面可以实现和端子与散热器之间的绝缘。

1.png

本设计方案选择的双面水冷IGBT如图2所示。其包括两个直流输入端子、一个交流输出端子和相应的低压端子。两个直流端子分别与电机控制器内母线电容的正负极相连接,交流输出端子与电机的三相输入端子相连接,低压端子直接与驱动控制电路板焊接。双面水冷IGBT封装的正反两面均附有两个表面镀铜的散热表面,两个散热表面与散热器之间填充导热材料后,可实现对IGBT的双面冷却。相比传统的单面冷却封装,带来的直接优势是可以获得较高的输出电流,提高电驱动总成的输出功率,并且高效的散热可以使IGBT的工作温度保持在较低水平,降低了IGBT失效风险,提高了电机控制器的运行可靠性。结合当前市面上现有的IGBT型号,本文采用6个双面水冷IGBT,两两并联,可以为电机输出单相最高1200A的电流,电驱动总成最大功率可以达到240kW

2.png

在冷却系统方面,整个双面水冷模块设计有一个进液口和一个出液口。进液口直接作为电机控制器的进液口,与整车冷却系统相连接,出液口直接与电机冷却水道硬连接,实现电驱动系统的冷却系统集成,减少了外部管路的使用。

双面水冷IGBT配套散热器设计方案如图3所示。三对两两并联的IGBT并排放置,散热器水道由三个分布在IGBT两侧的水道并联而成,每个水道通过两块水冷板焊接形成,水冷板材料使用铝合金,铝具有较低密度和较高导热系数,有利于提高散热器的导热性能,降低散热器整体质量。焊接工艺的使用减少了密封圈和螺栓的数量,简化整体结构,有效降低整个IGBT散热模块的体积和质量。

3.png

IGBT散热器水道连通方式如图4所示。整个散热器包括一个进液口和一个出液口。在IGBT的长度方向有三个平行的水道,分布在IGBT的两侧,使每个IGBT与散热器接触的正反两面均有冷却液的流动,实现双面水冷。图4展示了流道内流速分布的仿真结果。

4.png

实际上,仅由水冷板组成的冷却水道内,冷却液与散热面的接触面积很小,不足以体现出散热能力,需要在流道内加入一些复杂结构来增加冷却液与水冷板的接触面积,使换热面积最大化。本文选用一种薄翅片结构,如图5所示,翅片通过焊接固定在水冷板上,三个并联的水道内均附有该类型的翅片。翅片的加入有效提高了散热器的散热能力。

5.png

在三个并联水道内均加入翅片,保证每个IGBT的两个散热面分布有散热翅片,U型的散热翅片可以有效增大换热面积,并且可以增强水道内的扰流效果,翅片的壁厚较薄,不会明显增大散热器的流阻,并可以有效降低热阻。

温度分布云图及计算结果如图6所示。通过计算,翅片可以明显降低冷却液对IGBT的热阻,并且对流阻的影响较小。相比较,加入翅片结构与无翅片结构,在进液口温度65℃,冷却介质为乙二醇水溶液(50∶50),热阻降低46%,流阻增大5%

6.png

1.2叠层母排及散热结构

三相铜排是电机控制器内部重要的电力传输部件,IGBT产生的三相交流电通过三相铜排输出给驱动电机。在设计中,由于设计空间有限,并且考虑到装配便利性,通常将三根铜排用绝缘膜包塑后重叠在一起,形成叠层母排。叠层母排结构紧凑,便于装配,并且可以有效降低杂散电感。随着对电机控制器功率密度和电磁兼容性能要求的不断提高,叠层母排成为更具有优势的部件。

但是,随着电机控制器功率的提升,叠层母排的发热问题变得严峻,由于铜排被导热性能较差的绝缘膜包裹,不利于铜排的热量散发,再加上重叠的设计,使三根铜排的散热面减少,在大功率运行时,铜排产生的热量无法散出,使铜排达到很高的温度水平。铜排温度升高会增大铜的电阻,造成更高损耗,降低效率;另一方面,铜排的温度会烘烤整个控制器腔体,对其他器件的运行造成影响。更重要的是,温度过高会使铜牌之间的绝缘膜失效,造成严重的绝缘故障,如何解决大功率电机控制器内叠层母排的发热问题是非常重要的。

本文采用一种叠层母排散热方案,通过双面水冷散热器的水冷板来对叠层母排进行散热。最靠近进液口的水冷板具有最低的温度,可以与冷却液的温度保持相近,再加上铝高效的导热,可以有效对叠层母排进行散热。叠层母排散热结构如图7所示。

7.png

水冷板上设计有散热凸台,并采用了翅片设计,在提升凸台强度的同时,加大了散热面积。叠层母排通过绝缘导热垫与从水冷板引伸出的凸台相接触,叠层母排产生的热量通过绝缘导热垫传递给散热凸台,散热凸台的热量通过翅片传递给与冷却液接触的水冷板内表面,最终由冷却液带走热量,从而实现对叠层母排的散热。

为了保证三相铜排、导热垫和散热凸台之间的贴合紧密程度,本文单独设计了一个压板,如图8所示,对叠层母排在竖直方向上进行压紧,一方面可以去除导热面之间的间隙,提高导热效率;另一方面可以起到防止叠层母排振动的功能。

8.png

温度分布云图及计算结果如图9所示。通过计算,散热结构的加入可以明显降低叠层母排的温度。加入散热结构与无散热结构相比较,在环境温度85℃,冷却液温度65℃,冷却介质为乙二醇水溶液(50∶50),叠层母排最高温度降低8%,铜排损耗降低5%

9.png

1.3薄膜电容及散热结构

由于电机控制器功率较大,薄膜电容的发热也较为严重,较高的工作温度会降低薄膜电容的寿命及可靠性,为此,需要对电容设计散热结构。本文中薄膜电容的外壳设计有散热凸台,装配后,散热凸台面粘贴导热垫后与双面水冷散热器的背面相贴,电容产生的热量通过导热垫传递给双面水冷散热器外壳,最终由冷却液带走热量,实现薄膜电容的散热。薄膜电容如图10所示。

10.png

温度分布云图及计算结果如图11所示。通过,电容散热结构的加入可以明显降低薄膜电容芯卷及铜排的温度。相比较,加入散热结构与无散热结构,在环境温度85℃,冷却液温度65℃,冷却介质为乙二醇水溶液(50∶50),芯卷最高温度降低6%,铜排最高温度降低8%

11.png

1.4整体控制器结构

电机控制器最高功率240kW,整机体积6功率密度为39kW/L

整个电机控制器内部布置如图12所示,接口部分包括一个冷却液进液口、一个冷却液出液口、一个三相输出接口、一个高压直流输入接口和一个信号接口。整机包括一套悬置安装点,可直接固定在电机与减速器上,形成电驱动总成。

12.png

其中电机控制器的进水管为单独零件,进水的朝向可以根据冷却系统要求进行调整。出水口与电机进水口对插连接,取消外界水管设计,提高集成度。高压连接方式选用一体式线接头,相比快插式的连接方式可以降低成本。

1.5总成结构

总成包括电机控制器、驱动电机和减速器。控制器布置在驱动电机斜后方,有效降低了总成的纵向高度,便于整车布置,满足后驱车型的空间要求。

总成结构如图13所示。总成采用三相高压线、旋变线束内置设计方式,提高集成度,总成之间无线束连接,仅有一个高压输入接口和低压信号接口。电机控制器冷却水道与驱动电机冷却水道硬连接,总成之间无外部管路,总成仅留有一个进液口和一个出液口。

13.png

结语

本文设计了一款240kW电机控制器方案,并展示了总成搭载方案,其中功率模块采用双面水冷式IGBT,有效提高了电机控制器的功率密度。对高功率大电流带来的器件发热问题,关键器件分别设计了散热结构,通过计算评估了散热效果。电机控制器主要特点有:

1) 功率模块采用双面水冷式IGBT,并设计了配套散热器,水道内双U型翅片的加入,可以降低热阻46%,流阻增大5%

2) 叠层母排设计了散热结构,利用双面水冷散热器进行散热,铜排最高温度降低8%,铜损降低5%

3) 针对薄膜电容设计了散热结构,利用双面水冷散热器进行散热,芯卷最高温度降低6%,铜排最高温度降低8%

4) 电机控制器整机功率密度可达39kW/L,相比传统单面水冷电机控制器提高了30%

本文来源:微特电机 版权归原作者所有,转载仅供学习交流,如有不适请联系我们,谢谢。

标签: 点击: 评论:

留言与评论(共有 0 条评论)
   
验证码: